Facet of 4D printing in biomedicine

نویسندگان

چکیده

Abstract Owing to the success of three-dimensional (3D) printing in biomedical applications, latest addition technology is four-dimensional (4D) printing, which has gained tremendous interest since 2012. 4D being considered as an upgradation and extension 3D that includes time a fourth dimension with utilization smart biomaterials, upon application any external stimulus, shape size printed structure change time. In this review, we highlight basic techniques involved memory effect, various stimuli like light, temperature, pH, etc., cause change, leading transformation structures fabricated. using materials demonstrates property their possible applications field biomedicine regenerative medicine are discussed detail. The authors have focused on tissues, special bone dental tissue. Graphical abstract

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomimetic 4D printing.

Shape-morphing systems can be found in many areas, including smart textiles, autonomous robotics, biomedical devices, drug delivery and tissue engineering. The natural analogues of such systems are exemplified by nastic plant motions, where a variety of organs such as tendrils, bracts, leaves and flowers respond to environmental stimuli (such as humidity, light or touch) by varying internal tur...

متن کامل

Direct 4D printing via active composite materials

We describe an approach to print composite polymers in high-resolution three-dimensional (3D) architectures that can be rapidly transformed to a new permanent configuration directly by heating. The permanent shape of a component results from the programmed time evolution of the printed shape upon heating via the design of the architecture and process parameters of a composite consisting of a gl...

متن کامل

Multimaterial 4D Printing with Tailorable Shape Memory Polymers

We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (...

متن کامل

Four-Dimensional (4D) Printing: A New Evolution in Computed Tomography-Guided Stereolithographic Modeling. Principles and Application.

BACKGROUND Over the last decade, image-guided production of three-dimensional (3D) haptic biomodels, or rapid prototyping (RP), has transformed the way surgeons conduct preoperative planning. In contrast to earlier RP techniques such as stereolithography, 3D printing has introduced fast, affordable office-based manufacturing. We introduce the concept of 4D printing for the first time by introdu...

متن کامل

Optimization of 4D polymer printing within a massively parallel flow-through photochemical microreactor†

4D polymer micropatterning – where the position (x,y), height (z), and monomer composition of each feature in a brush polymer array is controlled with sub-1 micrometer precision – is achieved by combining a mobile, massively parallel flow-through photoreactor with thiol-acrylate photoinitiated brush polymerizations. Polymers are grown off the surface by introducing monomer, photoinitiator, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Materials Research

سال: 2022

ISSN: ['0884-1616', '1092-8928', '0884-2914', '1091-8876', '2044-5326']

DOI: https://doi.org/10.1557/s43578-022-00779-9